Archiv der Kategorie debian

New fatrace released, Debian package coming

Paul Wise poked me this morning about uploading fatrace (“file access trace”, see the original announcement for details) to Debian, thanks for the reminder!

So I filed an Intent To Package, and will upload it in a few days, unless some discussion evolves.

I also took the opportunity to do some modernization: The power-usage-report script now uses the current PowerTop 2.x instead of the old 1.13, uses Python 3 now, and includes the “process device activity” in the report. I released this as 0.5. The actual fatrace binary didn’t change its behaviour, it just got some code optimizations; thanks to Yann Droneaud for those.

Tags: , , , , ,

Urgent PostgreSQL security updates for Debian/Ubuntu

PostgreSQL just released security updates. 9.1 (as found in Debian testing and unstable and Ubuntu 11.10 and later) is affected by a critical remote vulnerability which potentially allows anyone who can access the TCP port (without credentials) to corrupt local files. If your PostgreSQL database exposes the TCP port to any potentially untrusted location, please shut down your servers and update now!

PostgreSQL 8.4 for Debian stable (squeeze) and Ubuntu 8.04 LTS and 10.04 LTS also got an update, but these are much less urgent.

Debian and Ubuntu advisories for all stable releases, as well as Debian testing are going out as we speak. The updates are already on security.debian.org and security.ubuntu.com.

I also uploaded updates for Debian unstable (8.4, 9.1, and 9.2 in experimental) and the Ubuntu backports PPA, but it will take a bit for these to build as we don’t have embargoed staging builds for those. Christoph updated the apt.postgresql.org repository as well.

Warning: If you use the current Ubuntu raring Beta-2 candidate images, you will still have the old version. So if you do anything serious with those installations, please make sure to upgrade immediately.

Update: Debian and Ubuntu security announcements have been sent out, and all packages in the backports PPA are built.

Please see the official FAQ if you want to know some more details about the nature of the vulnerabilities.

Tags: , , ,

python-dbusmock 0.6 released

I just pushed out a new python-dbusmock release 0.6.

Calling a method on the mock now emits a MethodCalled signal on the org.freedesktop.DBus.Mock interface. In some cases this is easier to track than parsing the mock’s log or using GetMethodCalls. Thanks to Lars Uebernickel for this.

DBusMockObject.AddTemplate() and DBusTestCase.spawn_server_template() can now load local templates from your own project by specifying a path to a *.py file as template name. Thanks to Lucas De Marchi for this feature.

I also wrote a quite comprehensive template for systemd’s logind. It stubs out the power management functionality as well as user/seat/session objects, and is convincing enough for loginctl. Some bits like AttachDevice is missing, as this sounds unlikely to be required for D-BUS mock tests, but please let me know if you need anything else.

The mock processes now terminate automatically if their connected D-BUS goes down, as advertised in the documentation.

You can get the new tarball from Launchpad, and I uploaded it to Debian experimental now.

Enjoy!

Tags: , , , , , , ,

Automatically generating documentation from GIR files

Many libraries build a GObject introspection repository (*.gir) these days which allows the library to be used from many scripting (Python, JavaScript, Perl, etc.) and other (e. g. Vala) languages without the need for manually writing bindings for each of those.

One issue that I hear surprisingly often is “there is zero documentation for those bindings”. Tools for building documentation out of a .gir have existed for a long time already, just far too many people seem to not know about them.

For example, to build Yelp XML documentation out of the libnotify bindings for Python:

  $ g-ir-doc-tool --language=Python -o /tmp/notify-doc /usr/share/gir-1.0/Notify-0.7.gir

Then you can call yelp /tmp/notify-doc to browse the documentation. You can of course also use the standard Mallard tools to convert them to HTML for sticking them on a website:

  $ cd /tmp/notify-doc
  $ yelp-build html .

Admittedly they are far from pretty, and there are still lots of refinements that should be done for the documentation itself (like adding language specific examples) and also for the generated result (prettification, dynamic search, and what not), but it’s certainly far from “nothign”, and a good start.

If you are interested in working on this, please show up in #introspection or discuss it on bugzilla, desktop-devel-list@, or the library specific lists/bug trackers.

Tags: , , , , ,

umockdev 0.2: record/replay input devices

I just released umockdev 0.2.

The big new feature of this release is support for evdev ioctls. I. e. you can now record what e. g. X.org is doing to touchpads, touch screens, etc.:

  $ umockdev-record /dev/input/event15 > /tmp/touchpad.umockdev
  # umockdev-record -i /tmp/touchpad.ioctl /dev/input/event15 -- Xorg -logfile /dev/null

and load that back into a testbed with X.org using the dummy driver:

  cat <<EOF > xorg-dummy.conf
  Section "Device"
        Identifier "test"
        Driver "dummy"
  EndSection
  EOF

  $ umockdev-run -l /tmp/touchpad.umockdev -i /dev/input/event15=/tmp/touchpad.ioctl -- \
       Xorg -config xorg-dummy.conf -logfile /tmp/X.log :5

Then e. g. DISPLAY=:5 xinput will recognize the simulated device. Note that Xvfb won’t work as that does not use udev for device discovery, but only adds the XTest virtual devices and nothing else, so you need to use the real X.org with the dummy driver to run this as a normal user.

This enables easier debugging of new kinds of input devices, as well as writing tests for handling multiple touchscreens/monitors, integration tests of Wacom devices, and so on.

This release now also works with older automakes and Vala 0.16, so that you can use this from Ubuntu 12.04 LTS. The daily PPA now also has packages for that.

Attention: This version does not work any more with recorded ioctl files from version 0.1.

More detailled list of changes:

  • umockdev-run: Fix running of child program to keep stdin.
  • preload: Fix resolution of “/dev” and “/sys”
  • ioctl_tree: Fix endless loop when the first encountered ioctl was unknown
  • preload: Support opening a /dev node multiple times for ioctl emulation (issue #3)
  • Fix parallel build (issue #2)
  • Support xz compressed ioctl files in umockdev_testbed_load_ioctl().
  • Add example umockdev and ioctl files for a gphoto camera and an MTP capable mobile phone.
  • Fix building with automake 1.11.3 and Vala 0.16.
  • Generalize ioctl recording and emulation for ioctls with simple structs, i. e. no pointer fields. This makes it much easier to add more ioctls in the future.
  • Store return values of ioctls in records, as they are not always 0 (like EVIOCGBIT)
  • Add support for ioctl ranges (like EVIOCGABS) and ioctls with variable length (like EVIOCGBIT).
  • Add all reading evdev ioctls, for recording and mocking input devices like touch pads, touch screens, or keyboards. (issue #1)

Tags: , , , , , , , , ,

umockdev: record and mock hardware for debugging and testing

What is this?

umockdev is a set of tools and a library to mock hardware devices for programs that handle Linux hardware devices. It also provides tools to record the properties and behaviour of particular devices, and to run a program or test suite under a test bed with the previously recorded devices loaded.

This allows developers of software like gphoto or libmtp to receive these records in bug reports and recreate the problem on their system without having access to the affected hardware, as well as writing regression tests for those that do not need any particular privileges and thus are capable of running in standard make check.

After working on it for several weeks and lots of rumbling on G+, it’s now useful and documented enough for the first release 0.1!

Component overview

umockdev consists of the following parts:

  • The umockdev-record program generates text dumps (conventionally called *.umockdev) of some specified, or all of the system’s devices and their sysfs attributes and udev properties. It can also record ioctls that a particular program sends and receives to/from a device, and store them into a text file (conventionally called *.ioctl).
  • The libumockdev library provides the UMockdevTestbed GObject class which builds sysfs and /dev testbeds, provides API to generate devices, attributes, properties, and uevents on the fly, and can load *.umockdev and *.ioctl records into them. It provides VAPI and GI bindings, so you can use it from C, Vala, and any programming language that supports introspection. This is the API that you should use for writing regression tests. You can find the API documentation in docs/reference in the source directory.
  • The libumockdev-preload library intercepts access to /sys, /dev/, the kernel’s netlink socket (for uevents) and ioctl() and re-routes them into the sandbox built by libumockdev. You don’t interface with this library directly, instead you need to run your test suite or other program that uses libumockdev through the umockdev-wrapper program.
  • The umockdev-run program builds a sandbox using libumockdev, can load *.umockdev and *.ioctl files into it, and run a program in that sandbox. I. e. it is a CLI interface to libumockdev, which is useful in the “debug a failure with a particular device” use case if you get the text dumps from a bug report. This automatically takes care of using the preload library, i. e. you don’t need umockdev-wrapper with this. You cannot use this program if you need to simulate uevents or change attributes/properties on the fly; for those you need to use libumockdev directly.

Example: Record and replay PtP/MTP USB devices

So how do you use umockdev? For the “debug a problem” use case you usually don’t want to write a program that uses libumockdev, but just use the command line tools. Let’s capture some runs from libmtp tools, and replay them in a mock environment:

  • Connect your digital camera, mobile phone, or other device which supports PtP or MTP, and locate it in lsusb. For example
      Bus 001 Device 012: ID 0fce:0166 Sony Ericsson Xperia Mini Pro
  • Dump the sysfs device and udev properties:
      $ umockdev-record /dev/bus/usb/001/012 > mobile.umockdev
  • Now record the dynamic behaviour (i. e. usbfs ioctls) of various operations. You can store multiple different operations in the same file, which will share the common communication between them. For example:
      $ umockdev-record --ioctl mobile.ioctl /dev/bus/usb/001/012 mtp-detect
      $ umockdev-record --ioctl mobile.ioctl /dev/bus/usb/001/012 mtp-emptyfolders
  • Now you can disconnect your device, and run the same operations in a mocked testbed. Please note that /dev/bus/usb/001/012 merely echoes what is in mobile.umockdev and it is independent of what is actually in the real /dev directory. You can rename that device in the generated *.umockdev files and on the command line.
      $ umockdev-run --load mobile.umockdev --ioctl /dev/bus/usb/001/012=mobile.ioctl mtp-detect
      $ umockdev-run --load mobile.umockdev --ioctl /dev/bus/usb/001/012=mobile.ioctl mtp-emptyfolders

Example: using the library to fake a battery

If you want to write regression tests, it’s usually more flexible to use the library instead of calling everything through umockdev-run. As a simple example, let’s pretend we want to write tests for upower.

Batteries, and power supplies in general, are simple devices in the sense that userspace programs such as upower only communicate with them through sysfs and uevents. No /dev nor ioctls are necessary. docs/examples/ has two example programs how to use libumockdev to create a fake battery device, change it to low charge, sending an uevent, and running upower on a local test system D-BUS in the testbed, with watching what happens with upower --monitor-detail. battery.c shows how to do that with plain GObject in C, battery.py is the equivalent program in Python that uses the GI binding. You can just run the latter like this:

  umockdev-wrapper python3 docs/examples/battery.py

and you will see that upowerd (which runs on a temporary local system D-BUS in the test bed) will report a single battery with 75% charge, which gets down to 2.5% a second later.

The gist of it is that you create a test bed with

  UMockdevTestbed *testbed = umockdev_testbed_new ();

and add a device with certain sysfs attributes and udev properties with

    gchar *sys_bat = umockdev_testbed_add_device (
            testbed, "power_supply", "fakeBAT0", NULL,
            /* attributes */
            "type", "Battery",
            "present", "1",
            "status", "Discharging",
            "energy_full", "60000000",
            "energy_full_design", "80000000",
            "energy_now", "48000000",
            "voltage_now", "12000000",
            NULL,
            /* properties */
            "POWER_SUPPLY_ONLINE", "1",
            NULL);

You can then e. g. change an attribute and synthesize a “change” uevent with

  umockdev_testbed_set_attribute (testbed, sys_bat, "energy_now", "1500000");
  umockdev_testbed_uevent (testbed, sys_bat, "change");

With Python or other introspected languages, or in Vala it works the same way, except that it looks a bit leaner due to “proper” object semantics.

Packages

I have a packaging branch for Ubuntu and a recipe to do daily builds with the latest upstream code into my daily builds PPA (for 12.10 and raring). I will soon upload it to Raring proper, too.

What’s next?

The current set of features should already get you quite far for a range of devices. I’d love to get feedback from you if you use this for anything useful, in particular how to improve the API, the command line tools, or the text dump format. I’m not really happy with the split between umockdev (sys/dev) and ioctl files and the relatively complicated CLI syntax of umockdev-record, so any suggestion is welcome.

One use case that I have for myself is to extend the coverage of ioctls for input devices such as touch screens and wacom tablets, so that we can write some tests for gnome-settings-daemon plugins.

I also want to find a way to pass ioctls back to the test suite/calling program instead of having to handle them all in the preload library, which would make it a lot more flexible. However, due to the nature of the ioctl ABI this is not easy.

Where to go to

The code is hosted on github in the umockdev project; this started out as a systemd branch to add this functionality to libudev, but after a discussion with Kay we decided to keep it separate. But I kept it in git anyway, given how popular it is today. For the bzr lovers, Launchpad has an import at lp:umockdev.

Release tarballs will be on Launchpad as well. Please file bugs and enhancement requests in the git hub tracker.

Finally, if you have questions or want to discuss something, you can always find me on IRC (pitti on Freenode or GNOME).

Thanks for your attention and happy testing!

Tags: , , , , , , , , ,

Running a script with unshared mount namespace

When writing system integration tests it often happens that I want to mount some tmpfses over directories like /etc/postgresql/ or /home, and run the whole script with an unshared mount namespace so that (1) it does not interfere with the real system, and (2) is guaranteed to clean up after itself (unmounting etc.) after it ends in any possible way (including SIGKILL, which breaks usual cleanup methods like “trap”, “finally”, “def tearDown()”, “atexit()” and so on).

In gvfs’ and postgresql-common’s tests, which both have been around for a while, I prepare a set of shell commands in a variable and pipe that into unshare -m sh, but that has some major problems: It doesn’t scale well to large programs, looks rather ugly, breaks syntax highlighting in editors, and it destroys the real stdin, so you cannot e. g. call a “bash -i” in your test for interactively debugging a failed test.

I just changed postgresql-common’s test runner to use unshare/tmpfses as well, and needed a better approach. What I eventually figured out preserves stdin, $0, and $@, and still looks like a normal script (i. e. not just a single big string). It still looks a bit hackish, but I can live with that:

#!/bin/sh
set -e
# call ourselves through unshare in a way that keeps normal stdin, $0, and CLI args
unshare -uim sh -- -c "`tail -n +7 $0`" "$0" "$@"
exit $?

# unshared program starts here
set -e
echo "args: $@"
echo "mounting tmpfs"
mount -n -t tmpfs tmpfs /etc
grep /etc /proc/mounts
echo "done"

As Unix/Linux’ shebang parsing is rather limited, I didn’t find a way to do something like

#!/usr/bin/env unshare -m sh

If anyone knows a trick which avoids the “tail -n +7″ hack and having to pay attention to passing around “$@”, I’d appreciate a comment how to simplify this.

Tags: , , , , , ,

python-dbusmock templates

With python-dbusmock you can provide mocks for arbitrary D-BUS services for your test suites or if you want to reproduce a bug.

However, when writing actual tests for gnome-settings-daemon etc. I noticed that it is rather cumbersome to always have to set up the “skeleton” of common services such as UPower. python-dbusmock 0.2 now introduces the concept of “templates” which provide those skeletons for common standard services so that your code only needs to set up the particular properties and specific D-BUS objects that you need. These templates can be parameterized for common customizations, and they can provide additional convenience methods on the org.freedesktop.DBus.Mock interface to provide more abstract functionality like “add a battery”.

So if you want to pretend you have one AC and a half-charged battery, you can now simply do

  def setUp(self):
     (self.p_mock, self.obj_upower) = self.spawn_server_template('upower', {})

  def test_ac_bat(self):
     self.obj_upower.AddAC('mock_AC', 'Mock AC')
     self.obj_upower.AddChargingBattery('mock_BAT', 'Mock Battery', 50.0, 1200)

Or, if your code is not in Python, use the CLI/D-BUS interface, like in shell:

  # start a fake system bus
  eval `dbus-launch`
  export DBUS_SYSTEM_BUS_ADDRESS=$DBUS_SESSION_BUS_ADDRESS

  # start mock upower on the fake bus
  python3 -m dbusmock --template upower &

  # add devices
  gdbus call --system -d org.freedesktop.UPower -o /org/freedesktop/UPower \
      -m org.freedesktop.DBus.Mock.AddAC mock_ac 'Mock AC'
  gdbus call --system -d org.freedesktop.UPower -o /org/freedesktop/UPower \
      -m org.freedesktop.DBus.Mock.AddChargingBattery mock_bat 'Mock Bat' 50.0 1200

In both cases upower --dump or gnome-power-statistics will show you the expected devices (of course you need to run that within the environment of the fake $DBUS_SYSTEM_BUS_ADDRESS, or run the mock on the real system bus as root).

Iftikhar Ahmad contributed a template for NetworkManager, which allows you to easily set up ethernet and wifi devices and wifi access points. See pydoc3 dbusmock.templates.networkmanager for details and the test cases for how this looks like in practice.

I just released python-dbusmock 0.2.1 and uploaded the new version to Debian experimental. I will sync it into Ubuntu Raring in a few hours.

Tags: , , , , , , ,

Running a Samba server as normal user for testing

For writing tests for GVFS (current tests, proposed improvements) I want to run Samba as normal user, so that we can test gvfs’ smb backend without root privileges and thus can run them safely and conveniently in a “make check” environment for developers and in JHBuild for continuous integration testing. Before these tests could only run under gvfs-testbed, which needs root.

Unlike other servers such as ssh or ftp, this turned out surprisingly non-obvious and hard, so I want to document it in this blog post for posterity’s benefit.

Running the server

Running smbd itself is mainly an exercise of figuring out all the options that you need to set; Alex Larsson and I had some fun figuring out all the quirks and hiccups that happen between Ubuntu’s and Fedora’s packaging and 3.6 vs. 4.0, but finally arrived at something working.

First, you need to create an empty directory where smbd can put all its databases and state files in. For tests you would use mkdtemp(), but for easier reading I just assume mkdir /tmp/samba here.

The main knowledge is in the Samba configuration file, let’s call it /tmp/smb.conf:

[global]
workgroup = TESTGROUP
interfaces = lo 127.0.0.0/8
smb ports = 1445
log level = 2
map to guest = Bad User
passdb backend = smbpasswd
smb passwd file = /tmp/smbpasswd
lock directory = /tmp/samba
state directory = /tmp/samba
cache directory = /tmp/samba
pid directory = /tmp/samba
private dir = /tmp/samba
ncalrpc dir = /tmp/samba

[public]
path = /tmp/public
guest ok = yes

[private]
path = /tmp/private
read only = no

For running this as a normal user you need to set a port > 1024, so this uses 1445 to resemble the original (privileged) port 445. The map to guest line makes anonymous logins work on Fedora/Samba 4.0 (I’m not sure whether it’s a distribution or a version issue). Don’t ask about “dir” vs. “directory”, that’s an inconsistency in Samba; with above names it works on both 3.6 and 4.0.

We use the old “smbpasswd” backend as shipping large tdb files is usually too inconvenient and brittle for test suites. I created an smbpasswd file by running smbpasswd on a “real” Samba installation, and then using pdbedit to convert it to a smbpasswd file:

sudo smbpasswd -a martin
sudo pdbedit -i tdbsam:/var/lib/samba/passdb.tdb -e smbpasswd:/tmp/smbpasswd

The result for password “foo” is

myuser:0:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:AC8E657F83DF82BEEA5D43BDAF7800CC:[U          ]:LCT-507C14C7:

which you are welcome to copy&paste (you can replace “myuser” with any valid user name, of course).

This also defines two shares, one public, one authenticated. You need to create the directories and populate them a bit:

mkdir /tmp/public /tmp/private
echo hello > /tmp/public/hello.txt
echo secret > /tmp/private/myfile.txt

Now you can run the server with

smbd -iFS -s /tmp/smb.conf

The main problem with this approach is that smbd exits (“Server exit (failed to receive smb request)”) after a client terminates, so you need to write your tests in a way to only run one connection/request per test, or to start smbd in a loop.

Running the client

If you merely use the smbclient command line tool, this is rather simple: It has a -p option for specifying the port:

$ smbclient -p 1445 //localhost/private
Enter martin's password: [enter "foo" here]
Domain=[TESTGROUP] OS=[Unix] Server=[Samba 3.6.6]
smb: \> dir
  .                                   D        0  Wed Oct 17 08:28:23 2012
  ..                                  D        0  Wed Oct 17 08:31:24 2012
  myfile.txt                                   7  Wed Oct 17 08:28:23 2012

In the case of gvfs it wasn’t so simple, however. Surprisingly, libsmbclient does not have an API to set the port, it always assumes 445. smbclient itself uses some internal “libcli” API which does have a way to change the port, but it’s not exposed through libsmbclient. However, Alex and I found some mailing list posts ([1], [2]) that mention $LIBSMB_PROG, and it’s also mentioned in smbclient’s manpage. It doesn’t quite work as advertised in the second ML post (you can’t set it to smbd, smbd apparently doesn’t speak the socket protocol over stdin/stdout), and it’s not being used anywhere in the current Samba sources, but what does work is to use good old netcat:

export LIBSMB_PROG="nc localhost 1445" 

with that, you can use smbclient or any program using libsmbclient to talk to our test smb server running as user.

Tags: , , , , , ,

Python unittest: Show log on test failure

I found it surprisingly hard to determine in tearDown() whether or not the test that currently ran succeeded or not. I am writing some tests for gnome-settings-daemon and want to show the log output of the daemon if a test failed.

I now cobbled together the following hack, but I wonder if there’s a more elegant way? The interwebs don’t seem to have a good solution for this either.

    def tearDown(self):
        [...]
        # collect log, run() shows it on failures
        with open(self.daemon_log.name) as f:
            self.log_output = f.read()

    def run(self, result=None):
        '''Show log output on failed tests'''

        if result:
            orig_err_fail = result.errors + result.failures
        super().run(result)
        if result and result.errors + result.failures > orig_err_fail:
            print('\n----- daemon log -----\n%s\n------\n' % self.log_output)

Tags: , , ,