
Modeling and verification of security protocols

Part I: Basics of cryptography and introduction to
security protocols

Dresden University of Technology
Martin Pitt

martin@piware.de

Paper and slides available at http://www.piware.de/docs.shtml

Security protocols - Introduction



Role of security protocols

• critical element of the infrastructure of a distributed system

• simple, short and easy to express

• extremely subtle and hard to evaluate

• ’three-line programs that people still manage to get wrong’

→ excellent candidates for rigorous formal analysis

Security protocols - Introduction 1



Structure

Aspects of security:

security properties, attacker models, limits of cryptography and security
protocols

Principles of cryptographic algorithms:

keys, symmetric and asymmetric systems, DH key exchange

Security protocols:

notation, examples, vulnerabilities and attacks

Security protocols - Introduction 2



Part:

Aspects of security

Security protocols - Introduction 3



Security properties

What do we want to protect?

precise notions to formally talk about cryptography and protocols

Security protocols - Introduction 4



Secrecy

Strongest interpretation:

An intruder is not able to learn anything about any communication
between two participants.

can be approximated quite closely, but major overhead

→ Design decision: trade off parts of secrecy against efficiency

Security protocols - Introduction 5



Authentication

Strong authentication:

If recipient R receives a message claiming to be from sender S then
S sent exactly this message to R.

Weak authentication:

If recipient R receives a message claiming to be from sender S then
either S sent exactly this message to R or R unconditionally notices
that this is not the case.

→ Authentication = validation of origin + integrity

non-repudiation: used for digital signature systems

Security protocols - Introduction 6



Availability

If a certain service is requested, it must actually be available.

vital applications: distress signals, emergency telephones, remote surgery

Cryptography and protocols can do only little to achieve this!

Solutions: redundancy, reverse logic on alarms

Security protocols - Introduction 7



Intruder models

Who do we want to protect data from?

Every kind of security needs a physical support which is ultimately
trusted.

→ impossible to defend against an almighty or omnipotent attacker

Security protocols - Introduction 8



Limits of cryptography and security protocols

Many secure algorithms and protocols available (proved or stood the test
of time)

→ only at mathematical level!

Real-world implementations: refinement → new aspects, properties and side
effects:

• power consumption

• execution time

• radiation

• covert channels

Security protocols - Introduction 9



Part:

Principles of cryptographic algorithms

Security protocols - Introduction 10



Keys and why they are needed

In every distributed system there must be something that distinguishes
the legitimate recipient from all other participants.

In cryptography: knowledge of a specific secret → key

Security protocols - Introduction 11



Vital properties of key generation

• based on a truly random number

• very big key space → prevent identical keys and right guesses

• verification of relationship key ↔ owner

The whole system is at most as good and trustworthy as the initial
key generation.

Security protocols - Introduction 12



Symmetric cryptography

• encryption and decryption / signing and testing is done with equal keys

• several thousand years old

• examples: Vernam chiffre (one time pad), DES, AES

Security protocols - Introduction 13



Symmetric concealment

encrypt : X ×K → C
decrypt : C × K → X

∀k ∈ K, x ∈ X . decrypt
(
encrypt(x, k), k

)
= x

Sending an encrypted message from A to B:

• encryption: A chooses a message x ∈ X and calculates:
c = crypt(x, kAB)

• transfer: c is now sent to the recipient (and possibly to observers and
attackers)

• decryption: B calculates x = decrypt(c, kAB)

Security protocols - Introduction 14



Symmetric authentication

sign : X ×K → S

Sending a signed message from A to B:

• signing: A chooses a message x ∈ X and calculates s = sign(x, kAB)

• transfer: x; s is now sent to the recipient (and possibly to attackers)

• receiving: B receives a message x′; s′ (either the original or modified by
attackers)

• test: B calculates s′′ = sign(x′, kAB); if s′′ = s′, the message is valid.

Security protocols - Introduction 15



Symmetric key distribution

To use algorithms, participants have to agree to a common key → easy if
they can meet

if not → trusted third party; exchange must be secret and authentic

Problems:

• verification of equality

• key explosion

• dynamic set of participants

solved by Needham-Schroeder Secret Key (NSSK) protocol

Security protocols - Introduction 16



Asymmetric cryptography

• different keys for encryption and decryption / signing and testing

• first paper: 1976 (Diffie and Hellmann) → key exchange

• 1978: Rivest, Shamir, Adleman: RSA algorithm

• based on one-way function

• used conjectures: factorization, discrete logarithm

• breakthrough of “crypto for the masses” → PGP, GPG

Security protocols - Introduction 17



Asymmetric concealment

encrypt : X × PUB → C
decrypt : C × SEC → X

∀x ∈ X . decrypt
(
encrypt(x, pubA), secA

)
= x

Sending an encrypted message from A to B:

• encryption: A chooses a message x ∈ X and calculates
c = encrypt(x, pubB)

• transfer: c is now sent to the recipient (and possibly to observers and
attackers)

• decryption: B calculates x = decrypt(c, secB)

Security protocols - Introduction 18



Asymmetric authentication

sign : X × SEC → S
test : X × S × PUB → {correct,wrong}

Creating a signed message by A:

• signing: A chooses a message x ∈ X and calculates s = sign(x, secA)

• transfer: x; s is now sent to all desired recipients (and possibly to
attackers)

• receiving: a participant B receives a message x′; s′ (either the original or
modified by attackers)

• test: B now checks if test(x′, s′, pubA) = correct

→ provides non-repudiation → digital signature system

Security protocols - Introduction 19



Part:

Security protocols

Security protocols - Introduction 20



Security protocols

Protocol: a prescribed sequence of interactions between entities
designed to achieve a certain goal and end.

Security protocols: provide security properties to distributed systems

Security protocols - Introduction 21



Notation

Message n a → b : data

data consists of:

atoms: names, variables, literal constants.

nonces: nA unpredictable, freshly generated unique number

encryption: {data}k: encryption of data with the key k.

authentication: Signk(data): signature of data using the key k.

concatenation: a.b

Security protocols - Introduction 22



Challenge – Response

Purpose: verify that two parties A and B share a common secret key k
without revealing it.

1. A→ B: nA

2. B→ A: {nA}k.nB

3. A→ B: {nB}k

Security protocols - Introduction 23



Needham–Schroeder Secret Key

Purpose: establish a common secret key between A and B using only
symmetric cryptography and a trusted third party S (server)

Preliminary: pairwise distinct keys with S

1. A→ S: A.B.nA

2. S→ A:
{
nA.B.kAB.{kAB.A}SB

}
SA

3. A→ B: {kAB.A}SB

4. B→ A: {nB}kAB

5. A→ B: {nB − 1}kAB

solves key explosion, dynamic participant set

NB: encryption must provide binding of concatenated parts!

Security protocols - Introduction 24



Station–To–Station protocol

Purpose: establish a common secret key between A and B without trusted
third party → uses DH key exchange

1. A→ B: ax

2. B→ A: ay.{SignB(ay.ax)}k

3. A→ B: {SignA(ax.ay)}k

Security protocols - Introduction 25



Replay attack

Attacker monitors a (possibly partial) run of a protocol and later replays
some messages. This can happen if the protocol does not have any
mechanism for distinguishing between separate runs or cannot determine
the freshness of messages.

Example: military ship that gets encrypted commands from base

Solutions: nonces, run identifiers, timestamps, indeterministic encryption

Security protocols - Introduction 26



Mirror attack

Other participant is made to answer his own questions.

Vulnerability on challenge – response (A does not know k):

1. A → S: nA

2. S → A: {nA}k.nS

3. A′ → S: nS

4. S → A′: {nS}k.n
′
S

5. A → S: {nS}k

Security protocols - Introduction 27



Man in the middle

The attacker imposes himself between the communications of A and B.
This can happen if messages or keys are not properly authenticated.

“Academic” (stupid) example protocol for encrypted communication
without knowing each other’s public key:

Use of a commutative asymmetric cipher (like RSA):

1. A → B: {X}pA

2. B → A: {{X}pA
}pB

{{X}pA
}pB

= {{X}pB
}pA

3. A → B: {X}pB

Security protocols - Introduction 28



Man in the middle - attack

1. A → I(B): {X}pA

2. I(B) → A: {{X}pA
}pI

3. A → I(B): {X}pI

4. I(A) → B: {X}pI

5. B → I(A): {{X}pI
}pB

6. I(A) → B: {X}pB

Practical applications: initial key exchange is most susceptible to this attack

→ key exchange plays the role of the physical support!

Security protocols - Introduction 29



Interleave

The attacker uses several parallel runs of a protocol to exploit their
interactions.

Needham–Schroeder Public Key:

1. A → B: {A.nA}pB

2. B → A: {nA.nB}pA

3. A → B: {nB}pB

has been believed secure for many years; was even analyzed with BAN logic!

Security protocols - Introduction 30



Interleave – attack

I is legitimate user, plays an active role, but does not obey to protocol:

a.1. A→ I: {A.nA}pI

b.1. I(A)→ B: {A.nA}pB

b.2. B→ I(A): {nA.nB}pA

a.2. I→ A: {nA.nB}pA

a.3. A→ I: {nB}pI

b.3. I(A)→ B: {nB}pB

→ I knows both nonces and caused mismatch in A’s and B’s perception:

A thinks: communication and secret share with I
B thinks: communication and secret share with A

Security protocols - Introduction 31



Part:

Questions and criticism

Security protocols - Introduction 32


